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ABSTRACT 

 

 

  Aircraft icing is widely recognized as a significant hazard to aircraft operations in 

cold weather. Several anti-/de-icing systems have been developed recently for aircraft icing 

mitigation and protection, which can generally be classified into two categories: active and 

passive methods. While active methods rely on energy input from an external system for 

the anti-/de-icing operation, passive methods take advantage of the physical properties of 

the surfaces to prevent ice formation and accretion. While there is no known passive system 

that can eliminate ice formation over the protected surfaces, passive anti-/de-icing methods, 

especially ice phobic surface coatings, have been proved to be very helpful to mitigate the 

problematic effects of icing for various icing related applications. 

            In the present study, a comprehensive study was conducted to characterize ice 

adhesion strength over various surfaces by using a custom-built shear strength tester. The 

studied surfaces include recently developed functionalized surfaces like Slippery Liquid-

Infused Porous Surfaces (SLIPS) and commercially-available surface coatings like 

Hydrobead®, NeverWet®; polymer-based surfaces such as PMMA and PTFE, and metals 

like aluminum and stainless-steel. In addition, the static and dynamic contact angles for all 

the control surfaces were also measured to correlate the measured ice adhesion strength 

with the surface wettability. Furthermore, surface topography analysis was performed to 

acquire the 3-D surface profiles along with the averaged surface roughness to examine the 

effects of surface roughness on ice adhesion strength. Similarly, the ice adhesion strength 

was also analyzed at different temperatures (i.e., -50C, -100C, -150C and -200C) to reveal 

the temperature effects on the ice adhesion strength over hydrophilic and hydrophobic 
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surfaces. The influence of the durability of surface coatings on the ice adhesion 

performance of hydro-/ice-phobic coatings was also investigated experimentally in the 

present study. In coordinating with the experimental study, a numerical analysis was also 

performed to explore/optimize experimental design paradigms to minimize the 

measurement uncertainties. 
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CHAPTER I 

 INTRODUCTION 

1.1 Aircraft Icing  

Aircraft Icing can create significant problems to the overall performance and control of 

the aircraft. The ice accretion on critical surfaces like aircraft wings usually result in the 

loss of lift and thrust in addition to the gain in weight and drag [Bragg et.al, 2005]. 

Moreover, the ice shedding from the aircraft surfaces can also damage the airframe and 

engine components [Bassey and Simpson 2007]. Other icing effects can also include the 

loss of radio communications, loss of operation of control surfaces, brakes, and landing 

gear.  

Over the years, there were number of aircraft icing related accidents and incidents that 

caused several deaths of personnel and extensive damage of property. It was observed that 

944 icing related accidents and incidents occurred in US from 1978 to 2005 [Green, 2006]. 

Further between the years 2006 to 2010, 258 icing related accidents and incidents was 

revealed from the NTSB and ASRS databases [Appiah-Kubi, 2011]. It also the includes 

one of the major icing related accident in 2009 where four crew members and 45 passengers 

onboard the Bombardier Inc. DHC- 8- 402 twin engine aircraft were killed near the 

Clarence Center, New York.  

Around forty percent of the accidents in these investigations were attributed to inflight 

icing occurring on the wings, fuselage or control surfaces. The inflight ice accretion 

phenomenon is caused by the impingement of supercooled water droplets in the 

atmosphere. The weather conditions such as the temperature, water content and droplet 
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size results in the formation of ice over the aircraft surface. The ice accretion is primarily 

classified as rime ice and glaze ice based on the ice structure and appearance. The glaze 

ice is formed when the water droplets deform and/or flow over the surface prior to the 

freezing process resulting in a hard and transparent appearance [Hansman and Kirby, 

1987].  Moreover, when the liquid droplets freeze instantly upon impact develops rime ice 

which is brittle, opaque and tends to grow in the airstream.  It is found that the glaze ice 

poses more threat to the performance than the rime ice due its runback process that covers 

more area. An example for glaze and rime ice formation is illustrated in Figure 1.1 from 

the study of dynamic ice accretion on UAS propellers by Liu and Hu [2015] at Iowa State 

University. 

 

 

Figure 1.1 Formation of glaze and rime ice on propeller blades [Liu and Hu, 2017] 
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1.2 Ice Protection Systems (IPS) 

To address the potential impacts of aircraft icing, research on developing an efficient 

ice protection system is highly sought-after. Currently, there are several ice protection 

systems in use based on specific type of aircraft which can either prevent the ice formation 

(Anti- Icing) or enhance the removal of ice (De-Icing).  The following section gives a 

description of some of the ice protection systems based on the FAA Advisory Circular 91-

74B [2015].  

1.2.1 De-Icing Systems 

Pneumatic boots: - It comprises of rubber tubes attached to critical aircraft surfaces, 

such as the leading edges of wings and horizontal and vertical stabilizers. The tubes are 

made of air filled chambers which may be aligned either chordwise or spanwise.  The 

adhesive bond between the ice and rubber is designed to break by change in the shape of 

the boots by inflating the rubber tubes.  The pneumatic boot system is mostly used in low 

and medium speed aircrafts with propeller and turbo propeller engines.  

Electro-Impact or Electro-Mechanical: - This system uses mechanical force to 

remove the ice from the aircraft surface using actuators located underneath the skin. The 

actuators transmit pulses of energy directly to the ice interface and dislodge the ice. Several 

mechanisms of actuation can be used including ultrasonic, piezoelectric based.   

      Electro-thermal: -  deices a surface by heating the surface to a temperature above 

freezing to break the bond of accumulated ice. The shattered ice is then carried away by 

the airflow. The surface is allowed to cool to allow ice to form, and the heat is activated 
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again to shed the ice, thus repeating the cycle of deicing. The heat generation from 

continuous operation of conductive element also serves as anti-icing protection.  

 

  

(a) Pneumatic Boots                                             (b) Electro-Thermal   

Figure 1.2 Ice protection systems 

 

1.2.2 Anti-Icing Systems 

Bleed air IPS: - Bleed air system is used by most turbojet and turboprop aircrafts in 

which a pressurized hot air from the compressor section of the engine is supplied to ice 

prone surfaces for eliminating ice formation.  

Evaporative/Running Wet Systems: - These systems utilize chemical agent that 

lowers the freezing point of water found on aircraft surfaces and decreases friction 

coefficient to prevent ice adherence to the surfaces.  
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1.3 Challenges of Conventional Ice Protection Systems  

The current ice protection systems, in general, require associated components that add 

complexity and contribute to overall weight of the aircraft. In addition, the operation of  

electro-thermal and electro-mechanical system result in high cost of electrical power.  

Therefore, the energy requirements of the heating and mechanical anti/de-icing devices 

must be minimized to realize an efficiency benefit from the applications of ice protection 

techniques. Future generation of aircrafts will require an effective anti-/de-icing solution 

to extend their operating capabilities, improve safety, and reduce operating costs in cold 

weather. 

 

1.4 Passive Ice protection systems 

In contrast to the conventional ice protection techniques, the passive methods do not 

have an active control and energy requirement for de-/anti-icing of aircraft surfaces. They 

use functionalized surfaces which have tendency to repel the liquid water upon contact. 

Experiments have demonstrated that some superhydrophobic coatings do have icephobic 

properties [Cao et.al, 2011], that droplets can bounce off cold superhydrophobic surfaces 

without phase change [Maitra et.al, 2014], and some authors assert that 

superhydrophobicity directly implies anti-icing functionality [Vorobayev and Guo, 2015]. 
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1.4.1 Superhydrophobic coatings 

The superhydrophobicity of the surface depends on the combination of chemical 

surface energy and the surface texture. The lotus leaf is an example from nature which 

exhibit superhydrophobic property as a result of its surface with unique protruding features 

called papillae of varying height [Hensikat et.al, 2011]. The high density of papillae on the 

lotus leaf reduces the contact area of water by supporting the droplet weight. The reduced 

contact area with contact angle more than 1500 causes low adhesion of water helping in 

water roll off from the surface. Moreover, the papillae are also covered with wax material 

which reduces the surface free energy of the lotus leaf and enhancing the hydrophobic 

properties (Figure 1.3).  

 

Figure 1.3 SEM image of upper side of lotus leaf with papillae [Ensikat et.al, 2011] 
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Based on the characteristics of lotus leaf, number of researchers started developing 

superhydrophobic coatings for other applications. The efforts to incorporate such coating 

technologies in aircraft ice protection have been going on for long time. An alternate 

surface coating strategy attempts to reduce the surface adhesion strength by using a 

lubricating fluid impregnated in the coating matrix [Epstein et.al, 2012, Zhu et.al, 2013]. 

In these coatings, a lubrication fluid (such as an oil) prevents a strong bond between the 

ice and the surface. Diffusion replenishes any lubricant lost from the surface (e.g., lubricant 

is lost during an ice shedding event), making these surfaces robust and self-healing. 

Although these coatings proved to reduce the ice formation in static cases, dynamic 

impingement of the supercooled water droplets at high velocities still found to challenge 

the effectiveness of this method. Figure 1.4 shows how a superhydrophobic wing surface 

reduces the area of the wing covered in ice. Here, the aerodynamic stresses from the airflow 

over the wing surface sweeps away super-cooled water droplets from most of the wing's 

surface. However, ice still forms at the leading edge in the vicinity of the stagnation line. 

This highlights one of the major challenges facing water- and ice-phobic coating strategies. 

These coatings produce low adhesion forces between the water and/or ice and rely on 

aerodynamic stresses acting tangentially to the surface to remove the accretion. This 

approach breaks down at the stagnation line because the required shear stress near the 

stagnation line is very small or completely vanishes. Further exacerbating the problem is 

that the collection efficiency is a maximum at the stagnation line. This example illustrates 

how coatings that are effectively ice-phobic at nominal conditions may not perform well 

under in-flight impact icing conditions.   
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Figure 1.4 Ice accretion on an airfoil with and without a superhydrophobic treatment 

[Waldman and Hu, 2015] 

1.5 Ice Adhesion Mechanisms  

Ice adhesion is based on physical and chemical processes that exist between the ice-

solid interface. In general, the adhesion forces can be categorized into three different types: 

chemical adhesion that includes covalent and electrostatic forces; thermodynamic adhesion 

involving van der Waals forces and hydrogen bonding; mechanical adhesion due to solid 

surface roughness [Ghalmi et.al, 2009]. In addition, other phenomena such as the presence 

of the quasi-liquid like layer (QLL) can influence the ice adhesion.  

Electro Static Forces: The attraction between the two substrates caused by the transfer 

of electrons is based on the Coulomb’s law and the acceptor-donor interaction [Petrenko 

and Whitworth, 1999]. It was proposed that adherence of ice is influenced by the 

electrostatic interaction that exist at the ice-metal interface [Petrenko and Ryzhkin, 1997].  
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Van der Waals Forces: The Van der Waal forces are regarded as universal, resulting 

from dipole-dipole interaction. The research by Wilen et al., [1995] concluded that Lifshitz 

van der Waals (LW) interactions between ice and different materials were not significant 

compared to the electrostatic interaction.  

Hydrogen Bonding: Hydrogen bonding is caused by the distribution of proton 

(hydrogen atom) between two electronegative atoms such as oxygen, nitrogen or fluorine. 

These forces are responsible for the cohesion of solid ice from the liquid water [Ghalmi et 

al., 2009].  

Mechanical Bonding: The asperities or pores present on the surface result in the liquid 

water to penetrate and resulting in mechanical locking or friction after solidification 

[Kasaai and Farzaneh, 2004]. The mechanical bonds generally occur in micrometer range 

compared to much smaller length scale of other force mechanisms discussed above. The 

effect of mechanical bonding can be observed by the surface roughness parameter 

measured by devices like optical microscopes. Further discussion on the surface roughness 

parameter will be presented in Chapter 4 of this thesis.  

Quasi Liquid Layer (QLL): Several studies have observed a thin liquid layer at the ice-

solid interface which influences the ice adhesion. Jellinek [1962] reported that the thickness 

of the QLL ranges from 100 Å to 1000 Å at -4.50 C which corresponds to 30 to 300 water 

molecules. The QLL thickness was shown to have dependence on the temperature.  
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Figure 1.5 Strength and range of the typical intermolecular and interatomic forces 

[Lee, 1991] 

1.6 Ice adhesion Measurement  

The theoretical method of estimation of ice adhesion characteristics was based on the 

calculation of the ‘work of adhesion’. The work of adhesion is defined as the free energy 

required to separate the ice from the solid surface. Figure 1.6 illustrates the water drop on 

a solid surface in three-phase system of the liquid water in the drop, the solid surface and 

the surrounding gas. The shape of the droplet is determined by the liquid-solid, liquid-gas, 

and solid-gas interaction energies denoted by γSL, γLG and γSG respectively.  
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Figure 1.6 Water droplet on a solid surface with contact angle ƟC  

 

The three-phase equilibrium condition for water droplet is given by Young’s equation 

with contact angle ƟC which is expressed as  

         γLG cos ƟC = γSG - γSL                                                     (1.1)                                                                          

Dupre introduced reversible work of adhesion thermodynamically expressed as 

wA = γSG + γLG - γSL                                                           (1.2) 

By combing the two equations, lead to the Young-Dupre equation: 

                   wA = γLG (1 + cos ƟC)                                                       (1.3) 

According to the equation 1.3, the thermodynamic work of adhesion is approximated 

by the surface tension of liquid and the contact angle of liquid on the solid surface. When 

the contact angle is zero, the wetting is total and hence show better adhesion. As the contact 

angle increases, the surface wetting decreases and the material tends to be hydrophobic in 

nature when ƟC exceeds 900.   
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Considering the surface energies of water and ice are same and assuming similar 

interfacial energies at the solid surface, the work of adhesion for water can be approximated 

to the work of ice adhesion [Makkonen 2012]. In theory, it is expected that the ice removal 

depends on the contact angle based work of adhesion. However, in reality, macroscale 

experiments show deviations from the curve shown in Figure 1.7 due to the work spent to 

overcome material deformation or other factors renders the ice adhesion model complex 

and difficult to complete.  

 

 

Figure 1.7 Thermodynamic work of ice adhesion scaled by the surface tension of water 

as a function of water contact angle Ɵ [Makkonen, 2012] 
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The theoretical work of adhesion, in general, is not considered as suitable parameter to 

estimate ice adhesion characteristics. Rather, ‘adhesion strength’ which is defined as the 

maximum force required to separate the ice from the substrate is commonly used.      

Ice Adhesion Strength = 
Maximum force

Contact Area
 

                   τ = fx /A                                          (1.4) 

So far, many different techniques to measure the ice adhesion strength have been 

proposed. The purpose of ice adhesion strength measurement in a broader sense, is to 

develop an accurate analytical model to predict the ice adhesion over different surfaces. 

However, it would be extremely difficult in achieving a complete understanding of ice 

adhesion mechanism because of the number of uncertainties and influential factors 

involved. The determination of ice adhesion strength would allow better selection of 

materials for ice protection applications.   

 

1.6.1 Types of Ice Adhesion Strength Measurement                                 

Based on the direction of force applied on ice-solid interface, the adhesion testing can 

be broadly classified into three modes pure shear test, pure tension test and tests which 

involve both shear and tensile forces. Figure 1.8 gives the illustrations based on the modes 

of testing.  
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(a) Tension method 

 

(b) Shear test  

                              Figure 1.8 Testing Modes of Ice Adhesion Strength [Sayward, 1979] 

 

 

1.6.2 Shear testing  

Jellinek [1959] reported that adhesion strength yielded lower values in shear mode 

when compared to the tension mode. It was explained that the liquid like layer between ice 

and solid interface results in cohesive failure than adhesion failure during tension mode. 

Kasaai and Farzaneh [2004] have reported that the shear mode of testing would have more 

uniform application of load than the tension test.  
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1.7 Motivation / Objective 

Ice adhesion is a complex mechanism which is sensitive to various internal and external 

factors. So far, concrete testing platforms or procedures to acquire accurate measurement 

of ice adhesion are unavailable. The existing methods of adhesion testing are used to only 

estimate the relative ice adhesion characteristics of different surfaces like hydrophobic 

coatings. In general, the uncertainties due to the experimental method itself poses difficulty 

in obtaining the true adhesion data. Further, the absence of a comprehensive analytical 

model for ice adhesion would also make it hard enough to validate the experimental data 

or even develop a numerical simulation.   

The analytical ice adhesion model should address all the common factors of uncertainty 

including the surface roughness, fracture mechanics, surface chemistry which can be 

validated by experimental method. This enables to further progress the research on 

developing ice phobic coatings for aircraft ice protection application.  

The Aircraft icing physics and anti-deicing technology laboratory in the department of 

Aerospace Engineering at ISU is associated with working on the icing physics and 

modeling, experimental heat transfer and ice accretion processes over different surfaces. 

The core objective of the research group is to enable us to improve current icing models 

for more accurate prediction of ice formation and accretion processes as well as to develop 

more robust anti-/de-icing strategies to ensure safer and more efficient operations of 

various functional devices in cold weather. The work done for this thesis can be considered 

to be in conjunction with such broader objective of the research group. 
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1.8 Thesis Organization  

This thesis consists of six chapters in total. An introduction and background to the 

current study is given in Chapter 1 and the research is summarized with a conclusion in 

Chapter 6. An appendix is also included to present the additional data and images related 

to Chapter 3 and 4.  A brief summary for each chapter is given below: 

Chapter 2 describes the design of the simple/push shear ice adhesion strength testing. 

The major components of the test rig were divided into three systems and the working 

mechanism is explained. The standard operating conditions were also given at the end of 

the chapter. 

Chapter 3 presents a quantitative study of ice adhesion strength over different surfaces. 

The surfaces are divided into hydrophilic, hydrophobic and superhydrophobic based on 

their contact angles. The surface preparation was explained based on the type of 

substrate/coating used for the experiment. Further, the ice adhesion characteristics were 

compared to the contact angle of the surfaces to study the influence of surface wettability 

on the ice adhesion strength. 

Chapter 4 gives the analysis of ice adhesion strength with respect to the extrinsic 

parameters such as surface roughness and surface temperature.  

 Chapter 5 introduces a finite element study of the ice adhesion testing model to 

understand the stress distribution effects at the ice-solid interface. In particular, the 

estimation of uncertainties involved due to the experimental model was the objective for 

this numerical simulation.  
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CHAPTER 2 

EXPERIMENT DESIGN AND SETUP 

 

2.1 General Design of the Experiment 

The design criteria are based on the concept of pushing the ice sample over the test 

surface and obtain the ice adhesion strength based on the maximum force applied to break 

the contact similar to the ice adhesion strength measurement system mentioned by Mueler 

et al., [2010]. The experimental setup can be essentially categorized into three systems as 

illustrated in  Figure 2.1 

 

 

 Figure 2.1 Components of ice adhesion test rig  

 

 

 



www.manaraa.com

        18    

 

 

 

2.2 Description of apparatus 

2.2.1 Force Translation 

The force on the ice column is applied through an aluminum force probe fixed to a JR3 

load cell (model: 30E12A4) which has a nominal force range of 40N range with an 

extended capacity up to 60 N. The load cell rests on a three-axis linear translational system 

formed by a lab jack for positioning the height and two linear stages perpendicular to each 

other for adjusting the force probe in axial and lateral directions. The axial displacement is 

achieved using a linear actuator (Newport CONEX-LTA-HS)  

                                  

2.2.2 Thermal System 

The experiment consists of a thermoelectric or Peltier cooler from TETech (CP- 061) 

that can be controlled using an external digital thermal controller (TETech TC-48-20). The 

temperature ranges for the cooler can be achieved to -200 C under ambient room 

temperature. The thermal controller is also connected to a thermistor sensor (MP-3193) 

which is fixed to aluminum mounting plate that is attached to the cold side plate of the 

cooler. The dimension of the cold plate is about 5-inch x 3.15-inch rectangular section with 

4 x screw holes to join the mounting plate for the substrate.  

In order to minimize the effect of frost/condensation over the test surface and cooler 

during the freezing process, an environmental chamber was created. Another insulated 

chamber filled with dry ice was connected to the environmental chamber which helps to 

flush out the moisture containing air with subliming CO2 vapors. Figure 2.2 shows the frost 

formation over the test substrate and cooler regions exposed to surroundings before the 

installation of the environmental chamber.  
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Figure 2.2 Frost formation over the test substrate during freezing process 

 

2.2.3 Ice Sample and Test Substrate Preparation 

The test substrates were a 50mm square aluminum plates over which the control 

surfaces were created. The substrate plate is directly in contact with the cooler with the 

help of mounting plate machined to fit the substrate inside with only the one surface open 

for the experiment (Figure 2.3).  

The ice samples were created using 3-D printed hollow circular cylinders made of 

VeroWhite plastic material. The standard thickness for the cylindrical mold was 0.25mm 

and height was 10mm.  The diameter of the ice sample was between 6 mm to 20 mm 

depending on the test surface and experimental objective.  
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Figure 2.3 Actual configuration of ice adhesion experiment 

 

2.3 Experimental Procedure 

The test procedure started with clamping the test plate onto the cooler. Next, the ice 

mold was placed onto the surface, and a syringe was used to inject deionized water into the 

mold, ensuring that no air bubbles were trapped underneath. The lid to the environmental 

chamber was closed, and the chamber was filled with carbon dioxide vapors released from 

sublimating dry ice. The CO2 displaced the humid air from the test chamber, preventing 

condensation from forming on the test surface. The Peltier cooler was turned on and set to 

the test temperature, and allowed to stabilize for 15 minutes, allowing the water sample to 

freeze and the temperature to remain steady during the test. While the temperature 
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stabilized, the force probe was aligned with the sample and set at 0.5 mm above the test 

surface.  

A custom MATLAB code sampled the voltage signals from the force transducer at 

22000 Samples/s. First a 10 second force tare measurement was recorded prior to bringing 

the probe into contact with the ice sample. Then forces were recorded while the linear 

actuator stage was moved at a rate of about 0.5 mm/s, until the sample was sheared of the 

surface. The MATLAB code applied the transducer’s calibration matrix to the voltage 

signals, and divided by the sample’s area to compute the average shear force per adhesion 

area. The adhesion strength was considered as the maximum force per-area observed before 

failure. Each test surface was measured multiple times for a reliable measure of the average 

and standard deviation of the measured adhesion strengths. Table 2.1 gives the 

experimental parameters for the ice adhesion strength tests mentioned in next chapter. 

     

 Table 2.1 Experimental parameters for ice adhesion test  

   

 

 

                                              

 

 

 

Experimental Parameters 

Cooler Temperature -8
0 

C 

Probe Speed 0.5 mm/s 

Freezing Time 30-60 minutes 

Sampling Rate 22,000 Hz 

No. of trials 10 
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 The experimental results helped to find out the displacement and strain properties 

of the ice-substrate interface using the force data recorded by the load sensor connected to 

the probe. In Figure 2.4 (a), the raw data is shown where the ratio of applied force recorded 

from the load sensor to the ice sample area is plotted for the time elapsed since the initiation 

of the experiment and until after the ice is broken at the aluminum substrate interface. The 

maximum value of this ratio or peak stress is considered as the adhesion strength of ice on 

a surface. From the initial force and time data, we could obtain the displacement result as 

shown in the Figure 2.4 (b) along with the stress-strain curve in Figure 2.4 (c). The load-

displacement curves here depict almost linear relationship which suggests the elastic 

behavior of ice bonding mechanism. However, a little non-linearity is also visible which 

could be attributed to the elongation properties of the plastic shell that holds the ice or 

perhaps it could also be related to the non-linearity of the adhesion mechanism itself.  

                    

(a) Shear force-per-area vs time 
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(b) Force vs Displacement 

                        

(c) Shear stress vs strain 

Figure 2.4 Elastic properties of ice-substrate adhesion mechanism 
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CHAPTER 3 

MEASUREMENT OF ICE ADHESION STRENGTH OVER SURFACES 

 

3.1 Material Selection  

The idea of selecting different materials was to identify the behavior of ice adhesion in 

comparison to the surface characteristics. These surfaces include commercial water 

repellent coatings like Rust-Oleum NeverWet ®, Hydrobead ® along with recently 

developed functionalized surface, SLIPS. Metals like Aluminum 6061 and Stainless Steel 

316 were also used in addition to some polymers such as PMMA (Acrylic), PTFE (Teflon), 

PFA and VeroWhite. Rust-Oleum® Enamel protective paint was utilized as the reference 

to compare the ice adhesion reduction.  

 

3.2 Surface Preparation 

Aluminum plates (Al 6061) from McMaster-Carr were cut into 2-inch square section 

with 0.25-inch thickness were used as a standard base for application of spray coatings or 

attaching thin polymer films. The bare aluminum and stainless metal surfaces were faced 

(machining) to remove any rust formation on the testing side of the plates.  

The procedure for spray coatings (Hydrobead, NeverWet and Enamel Paint) were 

based on the manufacturer instructions for each of the specified surface. The aluminum 

base plate was rinsed with water or isopropanol and allowed to dry thoroughly before the 

application of any coating. The SLIPS (Slippery Liquid Infused Porous Surface) is that was 
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prepared by impregnating a thin, porous cloth in oil and stuck to the aluminum substrate. 

Teflon and PFA sheets/thin films (0.002-in thick) were rigidly adhered without surface 

wrinkles to the aluminum substrate plate using adhesive and inserted into the mounting 

plate. Commercially available PMMA/ acrylic plates and 3-D printed VeroWhite plates 

were prepared with similar dimensions of the aluminum base plate.  

 

3.3 Surface Wettability and Contact Angle Measurement 

The wettability characteristic of a surface can be analyzed by measuring the contact 

angle. As described in Chapter 1, contact angle of water droplet is determined by the three 

phase equilibrium of liquid, solid and air. The term ƟC in Young’s equation (Eq. 1.1) is 

usually called the static contact angle applicable for homogenous solids. However, with 

the real solids, liquids and ambient conditions, ƟC can vary over time. 

The dynamic contact angle (Figure 3.1) is measured during wetting or de-wetting 

process. Advancing contact angle Ɵa is measured when the water is added in small amount 

to the initial droplet where the contact angle will be increased while the contact line stays 

intact. Similarly, the contact angle is reduced when the water is removed in small amount 

which is attributed to receding contact angle Ɵr. The difference between the advancing and 

receding contact angles, Ɵa - Ɵr, is called the contact angle hysteresis. 
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Figure 3.1 Dynamic contact angle (a) Advancing CA (b) Receding CA 

 

Currently, there are several techniques to measure the contact angles. For the current 

study, Sessile drop technique is utilized in which a high-resolution camera is used to 

capture the liquid-solid interface and the image is analyzed more often by the imaging 

software. This technique is applicable for obtaining both static and dynamic contact angles.  

3.3.1 Experimental Setup 

To characterize the wettability of the test surfaces used in the ice adhesion experiment, the 

static and dynamic contact angles were experimentally measured. The experimental 

configuration is depicted in Figure 3.2. A high-speed camera (PCO Tech, Dimax) using 

105 mm macro lens (Nikon, 105mm Nikkor 2.8D) was positioned with a view from the 

side of substrate mounted on vertical lab jack. A syringe is used to pump deionized water 

through a needle mounted above the substrate, forming a drop that could be expanded and 

contracted, thereby creating advancing and receding contact line. A 20W led lamp (Dot 
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Line RPS Studio, RS-5410) illuminating a piece of frosted glass provided back-

illumination to provide high-contrast images. 

 Each substrate was tested by forcing water through the needle using the syringe, 

thereby creating an expanding droplet with an advancing contact line. Then, the syringe 

was used to pull the water back into the needle, causing the droplet to shrink and the contact 

line to recede. The images recorded with the high-speed camera were analyzed using the 

open source ImageJ software with additional DropSnake plugin for enhanced contact angle 

measurement. The DropSnake method is based on detecting the global drop contour using 

B-spline snakes or active contours as depicted in Figure 3.3.  

 

 

 

Figure 3.2 Setup for the contact angle measurement 
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Figure 3.3 Droplet shape analysis for contact angle 

 

3.3.2 Contact Angle Results  

The contact angles for 10 different material surfaces were tested to compare their 

surface wettability. A summary of the measured contact angles is presented in Table 3.1 

along with their corresponding water repelling characteristics. Based on the measured 

contact angles, the surfaces can be divided into three categories namely hydrophilic (CA < 

900), hydrophobic (CA > 900) and superhydrophobic (CA > 1500).  

 The enamel surface shows significant contact angle hysteresis when compared to 

other surfaces with the advancing contact angle and receding contact angle around 1040 

and 200 respectively. On the other hand, SLIPS, NeverWet and Hydrobead surfaces 

exhibited contact angle hysteresis less than 200. Interestingly, the static and dynamic 
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contact angles of SLIPS surfaces are in the hydrophobic range instead of superhydrophobic 

as seen in the case of Hydrobead and NeverWet coatings.   

 

Table 3.1 Summary of contact angle measurements 

 

 

 

(a) Advancing CA measurement of Enamel 

Surface 
ACA 

(0) 

RCA 

(0) 

Hysteresis 

(0) 

CA 

Static (0) 
Wetting Property 

Enamel 104 20 84 65 Hydrophilic 

Aluminum 71 21 47 68 Hydrophilic 

Stainless Steel 86 24 62 75 Hydrophilic 

PMMA 82 61 21 73 Hydrophilic 

PTFE 98 41 57 95 Hydrophobic 

PFA 104 50 54 101 Hydrophobic 

VeroWhite 71 20 51 39 Hydrophilic 

SLIPS 105 94 11 105 Hydrophobic 

Hydrobead 160 148 12 159 Superhydrophobic 

NeverWet 155 136 19 153 Superhydrophobic 
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(b) Receding CA measurement of Enamel 

 

 

(c) Advancing, Receding and Static CA of NeverWet 

Figure 3.4 Comparison of dynamic and static contact angles of surfaces with different 

hydrophobicity 

 

3.4 Ice Adhesion Strength Results  

The ice adhesion strengths for the 10 surfaces is presented in the Table 3.2 along 

with the distribution box plot illustrated in the Figure 3.5. It was observed that Enamel 

paint exhibited the adhesion shear stress around 1.4 MPa which was also the highest value 

among the measured surfaces. Since the enamel coating was a reference, the adhesion 

reduction factor was set to be 1. The hydrophilic metal surfaces like Aluminum and 
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Stainless Steel were among the surfaces with lowest adhesion reduction factors around 2.5. 

Moreover, the polymer surfaces excluding PFA such as PMMA, PTFE and VeroWhite 

showed adhesion reduction factors which were comparatively higher than the metal 

surfaces. Interestingly, the NeverWet and Hydrobead commercial water repellant coatings 

were observed to have ice adhesion strength similar to the polymer surfaces. However, 

only SLIPS can be attributed to exhibit ice phobic properties with the least shear stress of 

0.06 MPa recorded.  

 

 

Table 3.2 Summary of ice adhesion strength results 

 

S.No Surface  

Average Adhesion 

Strength 

(MPa) 

Std. Deviation 

(MPa) 

Reduction 

Factor 

1 Enamel 1.40 0.13 1.0 

2 Aluminum 6061 0.52 0.09 2.5 

3 Stainless Steel 316 0.56 0.13 2.5 

4 PMMA 0.33 0.05 4.2 

5 PTFE 0.42 0.06 3.4 

6 PFA 0.57 0.05 2.4 

7 VeroWhite 0.39 0.10 3.6 

8 SLIPS 0.06 0.01 23.3 

9 Hydrobead 0.40 0.09 3.5 

10 NeverWet 0.51 0.04 2.7 
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Figure 3.5 Box distribution plot for the ice adhesion strength of surfaces 

Further analysis can be made by comparing the ice adhesion strengths of these 

surface their wetting properties. Figure 3.6 gives the graphic trends showing the static 

contact angles of the surfaces plotted with the shear stress recorded. Although, the overall 

trend line in the Figure 3.6 shows a little decrease in shear stress, the inconsistencies in 

data can be seen in the relation between static contact angle and the ice adhesion strength. 

In addition, the relation can also be explained by comparing the contact angle hysteresis 

derived from the dynamic contact angles of the surfaces with the ice adhesion strength. In 

the Figure 3.7, the overall trend shows that ice adhesion strength increases with the increase 

in contact angle hysteresis. Similar relationship between CA hysteresis and shear stress 

was reported by Kulinich and Farzaneh [2009] using aluminum and superhydrophobic 

polymer surfaces.  
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Figure 3.6 Comparison of static contact angle and ice adhesion strength 

   

Figure 3.7 Comparison of contact angle hysteresis and ice adhesion strength 
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CHAPTER 4 

CORRELATION STUDY OF SURFACE PARAMETERS 

 

4.1 Effects of Surface Roughness on Adhesion 

Surface Roughness or roughness is quantified by the deviations in the normal direction 

of surface. The magnitude of roughness can be seen in both microscopic and macroscopic 

levels. Roughness effects the ice adhesion in many ways. The mechanical friction caused 

by the interlocking and sliding of the surface asperities of ice and surface adds to the force 

required to break the ice off the surface. Indeed, previous research also showed that the ice 

adhesion failure can be initiated by the crack propagation resulting from the stress 

concentration in ice due to the roughness [Hassan 2010, Boluk 1996]. In addition, 

wettability of liquid is influenced by surface roughness which determines the overall 

contact area of ice with the substrate. 

The Young’s Equation as described in Eq.1.1 assumes a homogenous surface without 

the consideration of surface roughness. Wenzel proposed a theory based on the 

heterogeneous rough surface. This theory assumes that the surface roughness enhances 

contact area of solid-liquid interface. The Young’s equation is modified using apparent 

contact angle, Ɵ* which is based on the product of the roughness ratio, r and ideal contact 

angle ƟC as given in Eq.4.1 [Marmur,2003].  

                                                             Cos Ɵ* = r Cos ƟC                                          (4.1) 
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Wenzel’s model cannot explain the heterogeneous surface when the liquid-solid 

contact is incomplete with air trapped between the roughness features as described in 

Figure 4.1. Cassie and Baxter addressed this limitation with another model which describes 

the apparent contact angle for heterogeneous surface. The Cassie-Baxter equation is given 

in Eq.4.2 where f is the fraction of solid surface area wet by the liquid. If f = 1, then the 

Cassie-Baxter equation would be similar to Wenzel equation.  

                                                          Cos Ɵ* = r. f. Cos Ɵc + f -1                                   (4.2) 

The application of Wenzel model and Cassie-Baxter model in practice is based on the 

contact angle range. When the contact angle is in the range 00 < Ɵc < 900, Wenzel theory is 

used whereas the Cassie-Baxter equation is used for hydrophobic surfaces with contact 

angles greater than 900.  

 

 

        

                                    (a)                                                                   (b) 

Figure 4.1 Wetting states of liquid, (a) Wenzel state (b) Cassie-Baxter state 
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In this study, the effects of surface roughness on ice adhesion were studied based on 

the results of ice adhesion strength for different surfaces compared with their respective 

surface roughness.  

 The bare aluminum substrates are hand polished with sandpaper grits ranging from 

220 to 2000 and further with polishing compound to achieve mirror like finish. The 

procedure for polishing surfaces was based on ASTM standards (E3-11) for metallographic 

surface preparation. In addition, NeverWet coating was applied with the varied number of 

coats used to create three different roughness.  

 

4.2 Surface Topography Analysis  

The contact angle which is mentioned in the wetting models for practical surfaces 

depends on the length scales of roughness. Surfaces with hierarchical micro-structures can 

also influence the hydrophobicity of a surface as described by the Lotus Effect in section 

1.5. Since, the roughness plays an important role in the ice adhesion process, measurement 

of surface through a 3-D surface topography analysis is required to estimate the influence 

of surface characteristics on ice adhesion strength. 

In general, the roughness measurement is commonly described by the parameter Ra 

(Eq. 4.3) which is the mean roughness calculated from the arithmetic average of the 

absolute values of the roughness profile that composes peaks and troughs (Figure 4.2) 

                                                              Ra = 
1

𝑛
∑ lZ𝑖l𝑛

𝑖=1                                                                      (4.3) 
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Figure 4.2 Roughness approximation parameters  

 

For the current study, the 3-D surface topography measurement was performed using 

Zygo NewView optical profilometer. The surface profile was captured using a 

magnification of 50X and with a field of view around 0.22 x 0.22 mm. The roughness 

resolution for the profilometer is set to 0.22 mm. The summary of the mean roughness for 

the surfaces is given in Table 4.1 and the surface profiles were shown in Figure 4.3. 

The topography analysis shows that polishing bare aluminum with sandpaper grits 

progressively reduces the surface roughness from 0.6 mm to 0.03 mm. Also, the NeverWet 

spray coating showed higher roughness with the increasing layers of coats. The enamel 

paint, VeroWhite polymer and SLIPS were observed to have more than 1 mm average 

roughness. 
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Table 4.1 Summary of surface roughness (Ra) Measurements 

Test Surface 
Roughness, 

Ra (um) 

Enamel 1.5 

Bare Aluminum 0.6 

Al,1000 grit 0.25 

Al, mirror-polish 0.03 

Stainless Steel 0.19 

PFA 0.07 

VeroWhite 1.5 

SLIPS 1.14 

NeverWet, 1 0.3 

NeverWet, 2 1.3 

NeverWet, 3 3.8 

Hydrobead 0.7 

 

 

 

(a) Bare Aluminum 



www.manaraa.com

        39    

 

 

 

 

(b) Aluminum, 1000 Grit 

 

(c) Aluminum, mirror finish 

 

 

(d) Enamel 
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(e) Stainless Steel 

 

(f) SLIPS 

Figure 4.3 Surface Topography Images with 3-D Contour 
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The influence of surface roughness on the ice adhesion strength can be observed 

from the Figure 4.4. As described previous section, different roughness profiles were 

created for Aluminum and NeverWet surfaces. It is observed that, for aluminum surface, 

the adhesion strength increases with the surface roughness amost linearly. However the 

NeverWet superhydrophobic surface depicts a contrary trend where its adhesion strenth 

reduces with increasing roughness.  

Evidently, influence of roughness on the ice adhesion depends on the wetting 

properties. In Figure 4.5, the adhesion strength for 8 surfaces as listed in Table 3.1, is 

plotted aginst their respective surface roughness. These surfaces were divided into two 

groups based on their contact angles. The hydrophilic surfaces (CA<900) marked in blue 

and the hydro/super-hydrophobic surfaces (CA>900) are marked in red for comparison. 

From the figure, it can be noted that the relationship between surface roughness and their 

corresponding shear stress are not consistent enough to establish a strong linear 

relationship. However, the comparison between hydrophobic/superhydrophobic and 

hydrophilic surfaces as a function of surface roughess can be viewed qualitatively in  

Figure 4.5.  
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Figure 4.4 Surface roughness vs ice adhesion strength  

 

Figure 4.5 Surface roughness vs ice adhesion strength based on hydrophobicity 
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4.4 Effect of Temperature on Ice Adhesion  

Temperature can influence the ice adhesion process through several mechanisms. The 

wetting characteristics of water and surface could vary at low temperatures due to change 

in surface tension of water [Heydari, 2016] which induce wetting transitions from a 

hydrophobic to hydrophilic regime. In addtion, the mechanical properties related to 

elasticity of solid substrates is directly influenced by the temperature (for example, 

expansion and contraction in solids with temperature change. Moreover, ice behavior aslo 

change with temperature, ductile at higher sub-zero temperatures to brittle at much lower 

temperatures [Jellinek,1959]. Makkonen [2012] reported the stress effects induced by the 

different thermal contraption of ice and solid surface on cooling. Also, as mentioned in 

section 1.4 in Chapter 1, the liquid like layer near the ice-solid interface with different 

properties from water and ice was proposed to be dependent on temperature. 

In this study, two superhydrophobic and two hydrophilic surfaces were considered to 

observe the effect the temperature on ice adhesion strength. The preparation of surfaces 

was similar to the description in Chapter 3. The temperature of the cooler in this test was 

set to range from -5 0C to -20 0C.  

The effect of temperature on ice adhesion strength for these surfaces can be seen from 

Figure 4.6. The study shows that the ice adhesion strength increase by lowering surface 

temperature at different gradients. The ice adhesion strength of aluminum, hydrobead and 

verowhite at -5 0C are around 0.2-0.3 MPa whereas for the NeverWet, it is 0.61 MPa. The 

VeroWhite polymer shows a sharp increase in shear stress with lower temperature 

compared to other surfaces. On the contrary, NeverWet surface shows little dependence on 
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temperature with a marginal increase from -5 0C to -20 0C. Aluminum shows fairly linear 

change in ice adhesion until -15 0C and increases further with a lower gradient. Similar 

trend can be viewed in case of Hydrobead surface where the shear stress increases from 

0.19 MPa to 0.51 MPa between -5 0C and -20 0C. However, a little downward trend can be 

observed for SLIPS with adhesion strength below 60 KPa for all the surface temperatures 

tested indicating better performance at lower temperatures compared to other surfaces. 

 

 

Figure 4.6 Surface temperature vs ice adhesion strength 
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CHAPTER 5 

NUMERICAL ANALYSIS OF ICE ADHESION EXPERIMENT 

 

5.1 Stress Distribution in Ice Adhesion Measurement 

The standard methods of calculating ice adhesion strength assume a homogenous stress 

distribution in which the ice adhesion breaking force is considered as a cumulative 

parameter for the ice-solid contact area. However, the accuracy of the ice adhesion strength 

measurement is influenced by the uncertainty of stress concentration in local regions within 

the ice-solid interface. These local stresses are usually different and appear to be higher 

than the total stress measured. The adhesion reduction factor as discussed in Chapter 3 can 

be viewed as a better parameter for comparing the ice adhesion characteristics of different 

surfaces. However, developing a physical model that can predict the ice mitigation requires 

accurate measurement of ice adhesion strength that also encompasses the critical stress 

values existing in the testing model.  

 Previous studies using finite element numerical analysis by Makkonen [2012] and 

Schulz [2015] showed the presence of uneven stress distribution in ice-solid interface while 

using shear strength tests. The numerical analysis has shown the presence both normal and 

shear stresses as opposed to only shear stress in ideal case. The combination of both stresses 

resulting in non-uniform load which cannot be resisted by the ice sample causes the crack 

initiation at high stress regions in the ice-solid interface resulting in poor adhesion strength 

measurement.  
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 5.2 Model for the Numerical Analysis 

A finite element model of the adhesion strength experiment is used to quantify the 

stress distribution at the ice-substrate interface. A linear statics model was built and solved 

using ANSYS. The model geometry was defined based on the geometry illustrated in 

Figure 5.1. The problem size was reduced by a factor of two by using the problem 

symmetry transverse to the loading direction. Figure 4 gives the schematic for the 

geometric model. 

 

 

 

Figure 5.1. Geometric model for FE study  
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The geometry of the ice cylinder diameter, D, the mold shell thickness, t, the height of 

the displacement probe, h, and the probe contact face height, δ, are all parameters that were 

defined in ANSYS, thereby allowing easy rebuilding and remeshing of the model to test 

the importance of varying these different parameters. The probe contact area was 

approximated as a square region, therefore, in the half-model, is defined as δ/2 wide. In 

actuality, the probe will contact increasingly larger regions of the shell as the applied 

loading increases and the shell deforms; however, the point of this model is to capture the 

stresses at the ice-substrate interface rather than the stress details in the plastic mold under 

then probe contact face. Therefore, the fixed area approximation with dimension of 

0.07inch x 0.25inch (derived from the actual cross section of probe in experiment of 

0.07inch x 0.5 inch) was employed to keep the analysis linear, and avoid the substantial 

modelling complexity and expense associated with a nonlinear contact problem. 

All three material regions were modeled as linear elastic materials with Young’s 

Modulus Y and Poisson ratio υ. The aluminum properties are Y=68.9 GPa and υ=0.33, the 

ice properties are Y=9.332 GPa and υ=0.3252 [Tulk et.al, 1996], and the VeroWhite 3d-

printed plastic properties are Y=2.5 GPa and υ=0.35.  The boundary conditions used for 

the model were to approximate the clamped edges of the test plate with a fixed 

displacement at the model edge the displacement of the force probe was enforced over the 

contact patch as a prescribed nodal x-displacement at the contact patch face (Figure 5.2a), 

the model symmetry was enforced along the centerline of the model (Figure 5.2b) 
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(a) 

 

(b) 

Figure 5.2. Model boundary conditions: (a) Fixed support condition (blue), close up 

view shows the where the probe displacement (yellow) is applied (b) Symmetry 

displacement (red) 
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The mesh was built using both the automated tetrahedral and hexahedral meshing tools 

in ANSYS, as well as building a structured hexahedral (sweep) mesh to control element 

size and shape in the vicinity of the applied load. The mesh depicted in Figure 5.3 is the 

finest hexahedral mesh, which employed 20 elements through the mold shell, 20 elements 

between the substrate and the bottom of the applied load, and 40 elements across the contact 

patch. The variously refined meshes were used for a mesh refinement study. 

 

Figure 5.3 Hexahedral sweep mesh with parallel and perpendicular mesh divisions 

 

The finite element parametric analysis was performed while considering three cases 

with the diameter (d), thickness (t), probe height (h) as defined in Figure 5.4 as a single 

variable in each case. Therefore, by letting two parameters constant, the effect of another 

variable could be estimated. The table (5.1) shows the input conditions for all three cases. 
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Figure 5.4 General design schematic of the ice adhesion shear test 

 

Case 
Diameter 

(mm) 

Probe Height 

(mm) 

Shell thickness 

(mm) 

1 6, 8, 10, 12, 14, 16, 18, 20 0.5 0.5 

2 20 0.1, 0.25, 0.5,0.75, 1, 2, 5 0.5 

3 20 0.5 
0.1-0.9 (+ 0.1)  

1-8 (+ 1) 

Table 5.1 Summary of parametric study cases 



www.manaraa.com

        51    

 

 

 

Similar to the FE study, the three cases were also investigated experimentally by using 

3D printed cylinder molds of different dimensions to the range considered for finite 

element simulation. In order to mitigate error from water leakage, the ice columns were 

prepared by filling the water into molds at -80 C substrate plate temperature instead of 

ambient room temperature. An aluminum substrate was considered as a control surface for 

all the tests.   

The mesh refinement study was performed by computing the results from a 1um probe 

displacement on the various meshes, using quadratic element orders. The models ranged 

in size from around 30,000 nodes in the very coarsest mesh, all the way up to 2 million 

nodes in the most refined quadratic hexahedral mesh. The total reaction force at the probe 

prescribed displacement face and the total force transmitted through the ice-substrate 

interface were computed by integrated the surface tractions over the respective surfaces.  

The results were computed by sampling the derived stresses at the nodes. When the mesh 

is sufficiently refined, it is expected that both methods should yield similar results. 

Additionally, the ratio of ice-substrate interface force to the reaction force at the probe was 

computed and plotted as a function of the mesh refinement. The mesh refinement study 

results are summarized by the results shown in Figure 5.5. The results in Figure 5.5 (a) and 

5.5(b) show that the magnitude of the forces in the model converge when given sufficient 

mesh refinement. Here, the fully refined meshes with quadratic order elements were 

required to achieve convergence 
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(a) 

 

(b) 
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(c) 

Figure 5.5. Mesh refinement study results. The results from the tetrahedral element 

meshes are shown in red, while the hexahedral mesh results are shown in blue. The 

different markers indicate different element orders and different evaluation points for the 

calculations. (a) Shows the probe reaction force per 1µm displacement as a function of 

the number of nodes in mesh model(b) Shows the force supported by the ice-substrate 

interface. (c) Show the ratio of the force supported at the ice-substrate interface to the 

applied load. 

 

The relationship between the stress distributions and the experiment parameters such 

as the sample size, D, the mold shell thickness, t, and the height of the probe above the 

substrate, h, were investigated, to allow the comparison of the adhesion strength results. 
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Figure 5.6 (a) and 5.7 (a) indicates the normal stress distribution contours for 6mm and 

20mm diameter ice cross section. The effect of moment is seen in both cases where there 

is tension (in red) on the probe side and compression on the other side (in blue). It also 

shows a localized downward stress near the probe contact region which could contribute 

to the failure initiation with bi-directional stress distribution concentrated in that region. In 

plane comparison for both cases shows that smaller cross section could result in prominent 

shear stress distribution as seen in Figure 5.6 (b) and 5.7 (b).  

The effect of this stress distribution, however, can be better understood from the Figure 

5.7 which compares the results for both experimental and finite element studies. The blue 

line shows the change in adhesion strength with different sample diameters. Based on this 

graph, we can identify that the adhesion stress decreases with increasing diameter where 

the 6mm and 20mm have values around 0.35 MPa and 0.2 MPa respectively. In addition, 

the finite element study shows that there is an increase of transmitted force fraction with 

larger dimeter or sample areas. These results could support the argument that stress 

distribution can influence the peak forces recorded when breaking an ice sample over the 

substrate. It can be explained that the smaller diameter shell requires higher adhesion stress 

to break the sample than the larger dimeter one because the bi-directional normal stress 

created due to effect of moment and probe contact (Figure 5.8 (a)) will tend to increase the 

stresses within the ice rather than the interface which contributes more toward cohesive 

failure mechanism than adhesive failure.  
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(a) 

 

(b) 

Figure 5.6. Stress distributions at the ice-substrate and mold-substrate interface for 6mm 

ice diameter (a) xz-shear stress distribution (b) z-stress distribution. In this plot, the 

probe applies the fixed displacement from the left side. 
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(a) 

 

(b) 

Figure 5.7. Stress distributions at the ice-substrate and mold-substrate interface for 

20mm ice diameter (a) z- stress distribution (b) zx-stress distribution. In this plot, the 

probe applies the fixed displacement from the left side. 
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Figure 5.8. Parametric study results for diameter (a) Experimental shear strength results 

plotted in blue vs diameter of ice sample (b Finite element result showing force fraction 

vs diameter of ice sample.  

 

The stress contours in Figure 5.9 (a) and 5.9 (b) describes normal and shear stress for 

probe height location of 2mm from the test surface. It is quite evident that the stress 

magnitudes are quite less when compared to the 0.5mm probe height case shown in Figure 

5.6 (b) and 5.7 (b). The possible reason is because the probe location reduces the 

propagation of contact stresses to the substrate interface which result in mild stress 

distribution at the interface. This phenomenon can be better explained from the Figure 5.10. 

The finite element study shows that the transmitted force fraction steadily increases from 

0 mm to 0.8 mm probe height and steadies out beyond 1 mm probe height cases. It is also 

interesting to see that the experimental results for adhesion strength as indicated by blue 
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line shows a similar effect of probe height compared to the finite element results. The 

adhesion strength slightly decreases from 0 to 1 mm and stays almost constant up to 5mm 

height. Then the line goes up for 8mm probe height case which is due to the influence 

cohesive failure of ice created by the moment resulted as force application moves away 

from the interface. This was also seen from the ice residue on the substrate after the test for 

8mm probe height case. However, the overall effect of probe height on ice adhesion results 

is not as significant as the influence of ice sample area. 

  The results of the last parametric study case are shown in Figure 5.11 and figure F.12 for 

5mm thick plastic shell. The stress contours in Figure 5.11 (a) and 5.11 (b) show that the 

increase in mold thickness reduces the stress distribution due to the slightly lower 

transmitted force fraction as seen in Figure 5.12. The experimental results show that a 

linear increase of adhesion strength with the increase of plastic shell/mold thickness. This 

could be due to higher force requirement for a thicker shell model when an equal 

displacement is applied compared to a thinner model. However, the effect of thickness can 

be neglected based on the results obtained here which are not significant enough to 

influence the overall adhesion strength and within the measurement uncertainties of the 

experiment.  
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(a) 

 

(b) 

Figure 5.9. Stress distributions at the ice-substrate and mold-substrate interface for 2 mm 

probe height case (a) z-stress distribution (b) zx- shear stress distribution. In this plot, the 

probe applies the fixed displacement from the left side. 
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 Figure 5.10. Parametric study results for probe height ‘h’ (a) Experimental shear 

strength results plotted in blue vs diameter of ice sample (b) Finite element result 

showing force fraction vs probe height.  
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(a) 

 

(b) 

Figure 5.11. Stress distributions at the ice-substrate and mold-substrate interface for 5 

mm mold thickness (a) z-stress distribution (b) zx-shear stress distribution. In this plot, 

the probe applies the fixed displacement from the left side. 
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Figure 5.12. Parametric study results for thickness (a) Experimental shear strength 

results plotted in blue vs diameter of ice sample (b) Finite element result showing force 

fraction vs mold thickness.  
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CHAPTER 6 

GENERAL CONCLUSION 

 

The primary objective of characterizing ice adhesion over different surfaces was 

achieved through a new ice shear strength testing facility. Several tests were conducted on 

the ice adhesion test rig and adhesive shear stress was measured for 10 different materials. 

The ice adhesion strength revealed that SLIPS required lowest ice removal force (<0.1 

MPa) among the test surfaces. However, the superhydrophobic surfaces, Hydrobead and 

NeverWet exhibited higher ice adhesion stress (>0.4 MPa).  

 To further characterize the variation in the ice adhesion strength for different 

materials, correlation studies were conducted. The contact angle measurements revealed 

the hydrophobicity and surface wettability nature of test surfaces. The comparison graphs 

of test surfaces revealed a linear trend in ice adhesion strength with contact angle 

hysteresis. Furthermore, the averaged roughness parameters were obtained from the 

surface topography analysis of test surfaces. The roughness and ice adhesion measurements 

for Neverwet and aluminum showed contrasting trends. The ice adhesion strength 

increased with higher roughness for hydrophilic surface and reduced for superhydrophobic 

surface. In addition, the ice adhesion strengths of 5 surfaces were compared at different 

surface temperatures -50 C, -100 C, -15 0C, -200 C. It was identified that ice adhesion shear 

stress of hydrophilic surfaces like Aluminum and Verowhite was higher at low 

temperatures whereas the NeverWet and SLIPS found to have little temperature dependent 

variation.  
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Perhaps the most import feature of this study is the numerical model of the ice 

adhesion experiment to evaluate the stress state at the ice-substrate interface and 

qualitatively compare with the experimental ice adhesion measurements. The numerical 

parametric study showed that smaller ice sample areas could overestimate the ice adhesion 

results due to the presence of higher stress concentration. Moreover, the study identified 

an optimum distance between the force probe and the test surface for the current 

experimental model. In addition, variation of external shell thickness showed no significant 

effect on the measurement.   

Based on the capability of the current method of ice adhesion measurement, it is 

possible to further investigate the ice phobic performance of more surfaces for anti-icing 

applications. In addition, the ability to obtain the force-displacement properties from this 

experiment can be used to develop an analytical model to characterize ice-substrate 

adhesion interface.  
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APPENDIX 

TESTING OF DURABLE ICEPHOBIC COMPOSITE COATING FOR 

AIRCRAFT ICING MITIGATION 

Rye Waldman, Linkai Li, Prashanth Beeram and Hui Hu 

Department of Aerospace Engineering, Iowa State University 

9 September 2016 

 

Five commercial proprietary coatings denoted “A1”, “A2”, “A4”, “A5”, and “A6”, 

were tested at Iowa State University Department of Aerospace Engineering to gauge the 

coatings’ ice adhesion performance. The coatings were subjected to two tests: 1) the 

coatings were applied to symmetric airfoil models and tested under a glaze ice inflight 

impact ice condition in the ISU Icing Research Tunnel facility, and 2) the coatings were 

applied to small aluminum test plates and tested in a shear force adhesion strength facility.  

The test model used in the present study is a rapid prototyped symmetric 

NACA0012 airfoil model with a chord length of 152.4 mm. The test airfoil model spans 

the test section, therefore, pseudo 2D flow is assumed. The coatings were tested on 

symmetric airfoil models mounted in the ISU-UTAS-IRT facility and tested at a 

representative glaze ice condition. The test condition was a 40 m/s wind speed (V∞), -8°C 

air temperature (T), and 2.0 g/m3 liquid water content (LWC). The wing was tested at 5° 

angle of attack. To record the ice accretion process on both the suction and pressure sides 

of the wing, each coated wing was tested twice, once at +5° angle of attack to observe the 

suction side, and once at -5° angle of attack to observe the pressure side. The 720x660 



www.manaraa.com

        69    

 

 

 

pixel2 images were recorded at 10 frames per second for 10 minutes to provide a time 

sequence of the ice growth and shedding during the test. After each test, the iced airfoil 

was photographed. 

In the following figures (Coating-A2 as an example), the broken red line denotes 

the boundary between the test surface on the left and the control surface on the right. The 

camera is oriented with the airflow from the top of the image toward the bottom. For each 

of the tests where ice shedding was observed, an image pair is shown highlighting an ice 

shed event.    

 

  
a. T=0 s b. T=60 s 
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c. T=120 s d. T=300 s 

  
e. T=450 s f. T=600 s 

Time sequence of ice accretion process (Pressure Surface) 

(Coating-2, V∞=40 m/s, LWC=2 g/m3, T=-8℃, α=-5 °) 

 



www.manaraa.com

        71    

 

 

 

  
Final ice accretion shape on the model (Pressure surface) 

(Coating-A2, V∞=40 m/s, LWC=2 g/m3, T=-8℃, α=-5 °) 

 

 
Ice shedding images pair ( Frame 2550 & 2551) 

(Coating-A2, V∞=40 m/s, LWC=2 g/m3, T=-8℃, α=-5 °) 
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The test coatings A1–A6 all show reduced adhesion strengths; however, the amount 

of adhesion strength reduction varies across the different coatings. To compare the relative 

adhesion reduction performance of the coatings, the Adhesion Strength Reduction was 

calculated by dividing the control’s adhesion strength by each coatings adhesion strength. 

The worst performing coating is A1, which only reduced adhesion strength by a factor of 

3 compared to the Rustoleum enamel. The best performing coatings were A6, A2, and A4, 

each of which reduced the adhesion by a factor of more than 10. 

The wind tunnel tests and adhesion strength tests indicate that the coatings A2, A4, 

A5, and A6 demonstrate observable reductions in the adhesion strength of ice. The 3 

coatings with highest Adhesion Strength Reduction were also the same coatings that 

produced the most ice shedding events in the wind tunnel tests. A1 was the poorest 

performing coating, both in terms of producing the smallest Adhesion Strength Reduction 

of 3.13, and in terms of having no ice shedding in the wind tunnel test. 

The wind tunnel tests indicate that the reduced adhesion strength allows the 

aerodynamic stresses to remove some of the ice features on the wing; however, the ice 

shedding is restricted to the pressure side of the airfoil where the flow is attached and the 

ice formations are individual ice feathers, which attach at a small area and protrude into 

the airflow. At the leading edge, the water deposited on the wing forms a thin liquid film 

that coats a larger surface area and remains low inside the boundary layer where the local 

air speeds are small. The aerodynamic forces near the stagnation point vanish, and allow a 

sheet of ice to form wrapped around the leading edge. Here, the bond of the ice to the 

surface is much greater than the aerodynamic forces, and the ice remains attached, 
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anchored to the surface and pressed onto the leading edge by the stagnation pressure. As 

the ice at the leading edge grows, the flow over the suction side of the wing separates, 

therefore there is insufficient high-speed air flowing over the ice feathers behind the 

leading edge ice to produce any shedding. 

In comparison to the control surface, which was finished to a very smooth polish, 

the test surfaces A1–A6 all exhibit substantial surface roughness. The rough surfaces 

protrude out into the boundary layer, and are localized water collection points. The ice 

accretion on the enamel surface is initially dominated by a water film that runs back over 

the smooth surface, eventually breaking into rivulets that continue along the surface. The 

ice feathers on the enamel surface originate only at the beads along the rivulets, or from 

the local peaks the water film instability. The rough surface of the A1–A6 coatings collect 

water further along the airfoil simply because they stick out into the flow. By smoothing 

the coatings much of the ice collected beyond the trailing edge could be avoided. 

Differences in the hydrophobicity of the coatings to the enamel coating results in 

thicker ice growth at the leading edge compared to the enamel control. All of the A1-A6 

coatings exhibit hydrophobic behavior (contact angle > 90°) while the enamel coating is 

slightly hydrophilic (contact angle < 90°). This results in the water beading up on the test 

coatings, which protrude into the flow freezing faster and initially causing increased 

leading edge roughness. Subsequent water that impinges at the leading edge gets caught in 

the roughness, and freezes closer to the leading edge. The enamel surface allows the water 

to wet the wing and run back, transporting more water downstream. Therefore, the ice 

covers more of the wing, but has a smaller profile on the enamel coating, while the leading 

edge ice accretion remains smaller in profile. 
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